
Polynomial Regression

This method fits a 2D polynomial to a set of data with data points. For instance, the quadratic (2

nd

order system) below requires at least 3 linearly independent data points to regress.

For this derivation, a quadratic equation is used, but the mathematics is expandable to any n
th

 order system. A
quadratic can be defined as:

The general form of least squares regression is to calculate the coefficients to some function that minimizes the
difference between the regressed and measured data.

 ∑((

Where (and are the y-components of the measured values. The equation for the least
regression of a quadratic is therefore:

 ∑(

The minimum value of will be the global minimum of the regression equation. At the global minimum the
derivative of must be 0.

For the derivative of to be 0, the partial derivatives of with respect to all the variables in the equation must also
be 0. Since the and values are known, we treat them as the coefficients and , , and as the variables.
Therefore the partial derivatives of with respect to , , and must also be 0.

 ∑(

 ∑(

 ∑(

Dividing by 2 on each side of the equation eliminates the 2’s outside of the sum. Simplifying the equations and
using the distributive law for summations, the equations can be rewritten as:

The sum of 1 represents the number of points (in the regression. Converting the previous equation to matrix
form gives.

[

] [

] [

]

Solving for the polynomial coefficients , , and :

[

] [

]

 [

]

Note: Calculation of the matrix inverse is outside of the scope of this section.

This method can be expanded to higher order polynomials as well. For instance, a 4

th
 order polynomial in the form

of:

Can be solved for as:

[

]

[

]

[

]

Notice that a distinct pattern arises. This same coefficient matrix can be calculated by taking the matrix product of
the original polynomial with itself for each point and summing.

∑

(

[

]

 [

]

)

[

]

The solution matrix can be calculated the same way.

∑

(

[

]

)

[

]

These forms are more conducive to software generalization. By creating a power array for the x values, the
powers of x can be calculated in a variable size loop that is dependent on the order of the system. In c++
pseudocode:

//Declare the calculation arrays

double EqnArray[Order+1];

double CoeffArray[Order+1][Order+1];

double SolnArray[Order+1];

//Calculate the polynomial variables for the current point. For the quadratic

//y = Ax^2 + Bx + C the EqnArray = [x^2 , x , 1]

EqnArray[Order] = 1;

for(int i=Order-1 ; i>=0 ; i--)

 EqnArray[i] = EqnArray[i+1]*x;

for(int n=0 ; i<NumPoints ; i++)

{

 for(int i=0 ; i<=Order ; i++)

 {

 //Accumulate points in the solution array

 SolnArray[i] += EqnArray[i]*y;

 //Accumulate points in the coeffient array

 for(int j=0 ; j<=Order ; j++)

 CoeffArray[i][j] += EqnArray[i]*EqnArray[j]*;

 }

}

Property of ahinson.com – Last Updated December 9, 2011

