
Polynomial Regression 

 
This method fits a 2D polynomial to a set of data with         data points.  For instance, the quadratic (2

nd
 

order system) below requires at least 3 linearly independent data points to regress. 
 

 
 

For this derivation, a quadratic equation is used, but the mathematics is expandable to any n
th

 order system.  A 
quadratic can be defined as: 
 

           
 
The general form of least squares regression is to calculate the coefficients to some function   that minimizes the 
difference between the regressed and measured data. 
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Where  (            and    are the y-components of the measured values.  The equation for the least 
regression of a quadratic is therefore: 
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The minimum value of   will be the global minimum of the regression equation.  At the global minimum the 
derivative of   must be 0. 

 
  

  
   

 
For the derivative of   to be 0, the partial derivatives of   with respect to all the variables in the equation must also 
be 0.  Since the   and    values are known, we treat them as the coefficients and  ,  , and   as the variables.  
Therefore the partial derivatives of   with respect to  ,  , and   must also be 0. 
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Dividing by 2 on each side of the equation eliminates the 2’s outside of the sum. Simplifying the equations and 
using the distributive law for summations, the equations can be rewritten as: 

 
                    

                  

                

 

 
The sum of 1 represents the number of points (   in the regression.  Converting the previous equation to matrix 
form gives. 
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Solving for the polynomial coefficients  ,  , and  : 
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Note: Calculation of the matrix inverse is outside of the scope of this section. 
 
This method can be expanded to higher order polynomials as well.  For instance, a 4

th
 order polynomial in the form 

of: 
 

                   
 

Can be solved for as: 
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Notice that a distinct pattern arises. This same coefficient matrix can be calculated by taking the matrix product of 
the original polynomial with itself for each point and summing. 
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The solution matrix can be calculated the same way. 
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These forms are more conducive to software generalization.  By creating a power array for the x values, the 
powers of x can be calculated in a variable size loop that is dependent on the order of the system. In c++ 
pseudocode: 
 

//Declare the calculation arrays 

double EqnArray[Order+1]; 

double CoeffArray[Order+1][Order+1]; 

double SolnArray[Order+1]; 

 

//Calculate the polynomial variables for the current point. For the quadratic  

//y = Ax^2 + Bx + C the EqnArray = [x^2 , x , 1] 

EqnArray[Order] = 1; 

for(int i=Order-1 ; i>=0 ; i--) 

  EqnArray[i] = EqnArray[i+1]*x; 

 

for(int n=0 ; i<NumPoints ; i++) 

{ 

  for(int i=0 ; i<=Order ; i++) 

  { 

    //Accumulate points in the solution array 

    SolnArray[i] += EqnArray[i]*y; 

 

    //Accumulate points in the coeffient array 

    for(int j=0 ; j<=Order ; j++) 

      CoeffArray[i][j] += EqnArray[i]*EqnArray[j]*; 

   

  } 

} 
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