Polynomial Regression

This method fits a 2D polynomial to a set of data with n > order data points. For instance, the quadratic (2nd
order system) below requires at least 3 linearly independent data points to regress.

For this derivation, a quadratic equation is used, but the mathematics is expandable to any n" order system. A
guadratic can be defined as:

y=Ax*+Bx+C

The general form of least squares regression is to calculate the coefficients to some function F that minimizes the
difference between the regressed and measured data.

e =) (F() —y)?

Where F(x) = Ax? + Bx + C and y’ are the y-components of the measured values. The equation for the least
regression of a quadratic is therefore:

&2 = Z(sz +Bx +C —y')?

The minimum value of & will be the global minimum of the regression equation. At the global minimum the
derivative of € must be 0.

de 0
dy

For the derivative of € to be 0, the partial derivatives of € with respect to all the variables in the equation must also
be 0. Since the x and y’ values are known, we treat them as the coefficients and A, B, and C as the variables.
Therefore the partial derivatives of € with respect to 4, B, and C must also be 0.

aE—ZZ(A 2+Bx+C—-y)x*=0
eV X X y)x© =

aE—ZZ(A 2+Bx+C—-y)x=0
38 X X y)x =

de

I 2 — ") =
— ZZ(Ax +Bx+C—y)=0

Dividing by 2 on each side of the equation eliminates the 2’s outside of the sum. Simplifying the equations and
using the distributive law for summations, the equations can be rewritten as:

AYx* + BYx® + CYx? = ¥x?y'
AYx3 + BYx? + CY¥x = Yxy'
AYx? +BYx+CY1 =Yy’

The sum of 1 represents the number of points (n) in the regression. Converting the previous equation to matrix
form gives.

DEAEED> 2D ¥ &l BNV B D W
Yx2 Yx? Yx|-|B|=|Zxy
Yx* ¥x n] lC Xy

Solving for the polynomial coefficients 4, B, and C:

Yt ¥ w2t [Exdy

A
Bl =|¥x* ¥x* Xx| -|Zxy
c Yx?2 Yx n >y’

Note: Calculation of the matrix inverse is outside of the scope of this section.

This method can be expanded to higher order polynomials as well. For instance, a 4™ order polynomial in the form
of:

y=Ax*+Bx®+ Cx* +Dx+E

Can be solved for as:

I DA Zx‘*]_l [2x*y]
|B| |Zx7 Zx® ¥x® ¥x* ¥xdl |¥ady’
|C|= Yx® Yx5 Yxt Yxd szl [Sy’
lDJ x5 Yxt Yxd Yx? ZxJ [Sxy’ |
BV Iywt g 32 3x onl Lyy |

Notice that a distinct pattern arises. This same coefficient matrix can be calculated by taking the matrix product of
the original polynomial with itself for each point and summing.

B [Zx® Xx7 ¥x® ¥x® ¥ah
|xi3| |ZX7 Yx6 Yx° Yxt Yl
Pl lee] et wf w2 w11 |=5e® BxS mxt pat 3
[xi ‘ rx5 Yaxt ¥ ¥x? yx
1 le“ Yx3 Yx? Yx n |

The solution matrix can be calculated the same way.

x;*t [Zx*y"]
[xf \l Zx3y’
x;? Y = 2xRy
| X; | / [Yxy' |
| l'yy |

These forms are more conducive to software generalization. By creating a power array for the x values, the
powers of x can be calculated in a variable size loop that is dependent on the order of the system. In c++
pseudocode:

//Declare the calculation arrays
double EgnArray[Order+1];

double CoeffArray[Order+1] [Order+1];
double SolnArray[Order+1];

//Calculate the polynomial variables for the current point. For the quadratic
//y = Ax"2 + Bx + C the EgnArray = [x"2 , x , 1]
EgnArray([Order] = 1;
for (int i=Order-1 ; i>=0 ; i--)
EgnArray[i] = EgnArray[i+1]*x;

for (int n=0 ; i<NumPoints ; i++)
{
for (int i=0 ; i<=Order ; i++)
{
//Accumulate points in the solution array
SolnArray[i] += EgnArrayl[i]*y;

//Accumulate points in the coeffient array
for (int j=0 ; j<=Order ; Jj++)
CoeffArray[i] [j] += EgnArray[i]*EgnArrayl[jl*;

Property of ahinson.com — Last Updated December 9, 2011

