Rotation & Translation Matrices

Rotation and translation matrices allow points to easily be moved around in a coordinate system, or moved from one coordinate system to another. All the following transformation matrices are in 3D homogenous coordinate format.

Translation

The translation matrix translates a point in 3D Cartesian space to another location specified by an offset vector (dx, dy, dz).

$$x' = x + dx$$
$$y' = y + dy$$
$$z' = z + dz$$

Converting these equations to matrix form gives:

[x']		[1	0	0	dx		[x]	I
y'	=	0	1	0	dy		y	
z'		0	0	1	dz		Ζ	
$\lfloor_1 \rfloor$		LO	0	0	1		$\lfloor_1 \rfloor$	

A fourth coordinate is added to the matrix to make the system homogeneous. This final parameter, typically depicted as w, is typically 1 unless the point is reaching infinity. The translation matrix T is the operator that translates the point from its original position to its new position.

A point P is translated to position P' converting the point P to a homogeneous representation and multiplying by the rotation matrix.

Rotation About X, Y, and Z-Axes

The x-axis rotation matrix rotates an object in 3D Cartesian space around the x-axis of the coordinate system by an angle θ_x . The rotation equations are derived from a general definition of a rotation in 2 degrees:

$$x' = x \cdot \cos(\theta) - y \cdot \sin(\theta)$$

$$y' = x \cdot \sin(\theta) + y \cdot \cos(\theta)$$

Applying this rotation logic to the y and z axes gives the rotation about the x-axis.

$$x' = x$$

$$y' = y \cdot \cos(\theta_X) - z \cdot \sin(\theta_X)$$

$$z' = y \cdot \sin(\theta_X) + z \cdot \cos(\theta_X)$$

Putting these equations into matrix form gives:

$$\begin{bmatrix} x'\\ y'\\ z'\\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos(\theta_X) & -\sin(\theta_X) & 0\\ 0 & \sin(\theta_X) & \cos(\theta_X) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\ y\\ z\\ 1 \end{bmatrix}$$

Yielding the rotation matrix for rotating about the x-axis.

$$R_X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta_X) & -\sin(\theta_X) & 0 \\ 0 & \sin(\theta_X) & \cos(\theta_X) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The rotation matrices for rotating about the y and z-axes are formulated in the same fashion but applying the rotation to the other axes. The basic rotation matrices for all three axes are shown below.

Rotation About Vector

This rotation matrix rotates a point in 3D Cartesian space around a vector (V) originating at the origin by an angle θ_V .

[TBD: Add mathematical basis]

A point P is rotated about the vector V to position P' by converting the point P to its homogeneous representation and multiplying by the rotation matrix.

$$R_{V} = \begin{bmatrix} 1 + (x^{2} - 1) \cdot C & -zS + xyC & yS + xzC & 0 \\ zS + xyC & 1 + (y^{2} - 1) \cdot C & -xS + yzC & 0 \\ -yS + xzC & xS + yzC & 1 + (z^{2} - 1) \cdot C & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} V \equiv (x, y, z) \\ S = \sin(\theta_{V}) \\ C = (1 - \cos(\theta_{V})) \end{array}$$

Property of ahinson.com – Last Updated July 10, 2012